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a) State what it means for a real sequence to converge.

I |
(b) State and prove the Sandwich theorem for sequences.
(c) Prove that 2" > n forn € N.

(

d) Use the definition of convergence (not the combination theorem or the sandwich

theorem) to show that
. 3-2741
Iim =

n—oco 2"+ 9

. (a) State the definition of lim f(z) = L.

I—a

(b) Let f : R — R be defined by

(z—-1)?+5, (z<1),
f(I):{ 1, (z = 1),
3z + 2, (z >1).

(i) Using only the definitions, i.e., using € and 4, show that

lim f(z)=15, lim f(z)=5.

Fe=i] = z—1+

i) 1s the function continuous at z = 17

d) Let [ be continuous on the compact interval [a,b]. Prove that f is bounded on

(
(c) State the Bolzano—Weierstrass Theorem.
(
|a, b].

. (a) State the Least Upper Bound Principle (continuum property).
(b) If they exist, find with justification the sup, inf, max and min of the set

S={27%+1:keNk>2}.

(c) Define what it means for a sequence to be Cauchy.
(d) State the General Principle of Convergence.

(e) Prove that every Cauchy sequence is bounded.
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4. (a) State and prove the Cauchy-Schwarz inequality.
(b) State and prove the Intermediate Value Theorem.
(c) Let f:[a,b] > R and g : [a, b] — R be continuous functions with
Jla) > g(a), [(b) < g(b).
Prove that we can find a € € (a,b) with f(£) = g(&).

(d) Let f(z) be a continuous function on [0,00) with f(0) = 0. We assume we can
find a constant k such that

In|16 - f(z)|= -2+ k, Vze |0, 00).

Show that
flz)=16-16e"*, Vze 0, c0).

5. (a) Prove that the harmonic series

S|

o0
n=]
diverges.

(b) State the alternating series test.

(c) Determine with explanations whether the following series converge or diverge.

2. 3n+1 2. (3n)! = n \"
. ke’ on
;2713—71’ ;(n)!(Qn)!' ; <n+l>

o
(d) If the series Z a2 converges, show that the series

n=1

converges absolutely.

6. (a) State the Arithmetic Mean - Geometric Mean Inequality for n non-negative
numbers a;, a, . .., a,.

] n
(b) Prove that the sequence z, = (] + —) Is increasing.
n

1\ "
(c) Prove that the sequence Un = (1 + —) is decreasing.
: n

(d) Show that z, < y,. Deduce that T, 1s bounded above, while y, is bounded
below. Conclude that they have the same limit.
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